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INTRODUCTION 

Virtually all eukaryotic cells contain microtubules. These are dynamic filamentous 
polymers that perform a variety of essential cellular functions, including the maintenance of 
cell shape, the intracellular transport of organelles, and cell division as part of the mitotic 
apparatus. Microtubules are assembled from subunits consisting of a- and ß-tubulin, 
which together form a heterodimer. Although it was originally thought that the tubulin 
heterodimer was formed by self-assembly of newly synthesized a- and ß-tubulin 
polypeptides (Detrich and Williams, 1978), our work has shown that heterodimer 
formation is a complicated process requiring interaction with many other components 
(molecular chaperones) (Tian et al., 1996, 1997; Lewis et al., 1996,1997). These 
chaperones include a multisubunit complex (termed chaperonin) which participates in the 
correct folding of tubulin molecules, as well as five other molecular chaperones that 
function in locking the a- and ß-subunits together into the functional heterodimer. The fact 
that heterodimer formation follows a complex pathway offers an opportunity to interfere 
with this process at a number of points. Since de novo heterodimer production is essential 
to the formation of the mitotic spindle, disrupting the supply of tubulin heterodimers is 
likely to prevent cell division and may therefore be a useful interventional mode in cancer 
chemotherapy. The purpose of the research conducted under this award is to understand 
the tubulin folding pathway in detail, and to explore ways of interfering with the tubulin 
folding pathways and their regulation. 

BODY 

3_ Purification of Milligram Quantities of Cofactor D 
Five tubulin-specific chaperones termed cofactors A-E participate in the pathway 

leading to the formation of assembly-competent tubulin heterodimers (Tian et al., 
1996,1997; Lewis et al., 1996,1997). To study the folding reaction biochemically, we 
require methods for the production of these proteins in recombinant host/vector systems, 
since purification of the cofactors from tissue sources is laborious, time-consuming, and 
yields too little material to be useful for biochemical analysis. We successfully expressed 
cofactors A, B, C and E in either E. coli cells or in insect Sf21 cells; however, we were not 
successful in producing biologically active cofactor D in either of these systems. We 
therefore constructed a recombinant adenovirus engineered for the expression of cofactor 
D. This was done by co-transfecting cultured host 293 cells with adenoviral DNA 
containing a deletion rendering it inviable, together with a plasmid containing 
complementing adenoviral sequences and including a full-length cDNA encoding cofactor 
D driven by the cytomegalovirus (CMV) promoter. Sequences generated by recombination 
in vivo would then lead to the production of viable (i.e. infectious) viruses. 

Viral plaques appearing several days after transfection were amplified and viral 
DNA prepared. Such preparations were then assayed by PCR to determine whether the 
viruses indeed contained cofactor D-encoding sequences. Several such recombinant 
viruses were obtained (Fig. 1). These viruses were further amplified and used to infect 
cultured HeLa cells, total extracts of these cells were then examined for the expression of 
cofactor D. We found one isolate that did result in the overexpression of cofactor D in 
HeLa cells (Fig. 2). 
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Fig. 1. PCR reaction products 
identifying recombinant adenoviruses for 
the expression of cofactor D. Three 
different primer sets are used on DNA 
from viral infected cells, the first 
identifying a sequence present only in 
nonrecombinant virus, the other two sets 
nested pairs amplifying recombinant 
cofactor D/viral sequence. 

Fig. 2. The expression of cofactor D in 
HeLa cell infected with a recombinant 
cofactor D-encoding adenovirus. A 
Coomassie-stained SDS-PAGE gel. The 
positions of molecular mass markers (kD) 
and cofactor D are indicated by arrows. 

A Purification of Recombinant Cofactor D as a Co-complex with ß-tubulin 
We purified recombinant cofactor D from adenovirus infected HeLa cells using the 

Chromatographie dimensions originally worked out for the purifiaction of cofactor D from 
tissue sources (Tian et al., 1996). We discovered that, upon analysis by SDS-PAGE, the 



recombinant cofactor D copurified with ß-tubulin as a cofactor D-ß-tubulin complex (Fig. 
3). We infer that overexpression of cofactor D in cultured cells results in the disruption of 
the cell's heterodimers, such that ß-tubulin is sequestered as a cofactor D/ß-tubulin 
complex (see below). 

Although the complex purified from adenovirus infected HeLa cells was not the 
originally intended product, we found it to be useful in establishing the stoichiometry of 
this important intermediate in the overall tubulin folding pathway. Analytical 
ultracentrifugation showed the complex to contain one molecule each of cofactor D and ß- 
tubulin. Experiments are currently under way to determine whether biologically active 
cofactor D can be obtained by the in vitro dissociation of the cofactorD/ß-tubulin complex. 
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Fig. 3. Cofactor D expressed in adenovirus infected HeLa cells copurifies with ß-tubulin. 
A semipurifed fraction containing cofactor D was fractionated on a gel filtration column, 
and analyzed by SDS-PAGE. The positions of cofactor D, ß-tubulin and molecular size 
markers (kD) are indicated by arrows. 

3        Proteolytic Digestion of Tubulin and its Effect on C-cpn-mediated Tubulin Folding. 
With the goal in mind of identifying inhibitors (task 3), we did experiments to see 

which part of the a- and ß-tubulin polypeptides interact with the folding machinery. To 
do this, we treated purified brain tubulin with subtilisin, which is known to remove the last 
20 or so amino acids from each polypeptide chain and results in the formation of asßs (Fig. 

4a). Either native brain tubulin or asßs was added to ß-tubulin in vitro translation reactions 
done in the presence of 35S-methionine, and the reaction products were resolved on non- 
denaturing gels (Fig. 4b). In reactions containing added unmodified tubulin, the yield of 
native labeled material is greatly enhanced relative to a control reaction done without added 
tubulin (compare tracks 1 and 2). In contrast, a parallel reaction done with added asßs in 
place of unmodified tubulin resulted in a relatively poor yield of material migrating as the 
hybrid heterodimer ctsß (track 3). In either event, the production of heterodimers was 

inhibited by the addition of the slowly hydrolyzable GTP analog GTP-y-S (tracks 3-6). 



These data suggest that the carboxyterminal domains of a- and ß-tubulin contribute to the 
overall GTP-dependent folding reaction. To test this hypothesis, we have synthesized 
peptides corresponding to the carboxyterminal domains. These will be assayed for their 
ability to inhibit a- and ß-tubulin folding in vitro (task 7). In addition, we will pursue this 
approach further in the third year of the grant since it has shown promise. This should not 
interfere with accomplishing tasks 7 and 8 which are scheduled, provided we find 
inhibitors. 
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Fig. 4. Tubulin subfragments in folding reactions. S-tubulin was generated by cleavage of 
purified brain tubulin by subtilisin. Panel a shows a 1:1 mixture of s-tubulin and brain 
tubulin. Panel b shows the result of adding either s-tubulin or brain tubulin to in vitro 
translation reactions of ß-tubulin. 

A Generation by PCR of fragments encoding portions of a- and ß-tubulin. 
We have begun task 2 by generating C-terminally truncated tubulins, to complement 

the experiment described in section 4.   We used oligonucleotide primers to make ßA9 and 

aA12, cDNAs encoding ß-tubulin lacking its last 9 amino acids and a-tubulin missing its 
last 12 amino acids, respectively.   We found that neither truncated tubulin would fold 
efficiently in vitro either by translation or by dilution from denaturant (Fig. 5). In addition, 
ß-tubulin/cofactor D intermediates do not form with ßA9, implying (as above) that the 
carboxyterminus is important for interaction with cofactors. We therefore hope to find that 
a peptide corresponding to this region will be an inhibitor.  This approach will be pursued 
further in the third year of the grant, since it has shown promise 
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Fig. 5. ßA9 and 0CÄ12 are not efficiently folded in vitro. Panel A. A Coomassie-stained 

SDS gel showing radiolabeled ßA9 (left) and ß-his (i.e. full-length tubulin with a carboxy- 
terminal his tag) (right). These proteins were used in in vitro translation reactions, and the 
products resolved on a non-denaturing gel, shown in panel B: left; ß-tubulin, center; ßA9, 

right; ß-his. The first track in each set is a tubulin translation reaction without additions; the 
second track is the same reaction with added purified unlabeled tubulin to drive the reaction 
to completion. Arrows at left show, from top to bottom, the positions of cofactor D/ß- 
tubulin complex, tubulin heterodimer and cofactor A/ß-tubulin complex. Arrows at right 

show the positions of the same species for ßA9 and ß-his, which migrate more slowly on 
native gels due to charge differences.   Panel C shows the folding of ocA12 radiolabeled 
and denatured in 7M urea and presented to chaperonin plus cofactor B (lane 1), cofactors 
B, C, D and E and unlabeled tubulin (lane 2) or plus cofactors D and E and unlabeled 
tubulin (lane3). Chaperonin/ aA12 complexes migrate near the origin; arrows show the 

expected positions of cofactors Dand E/ ocA12/ß-tubulin complexes, aA12/ß-tubulin 

heterodimer and cofactor B/ocA12 complexes respectively. Note that both truncated 
tubulins form little or no heterodimer. 

3        Effects of cofactors in vivo. Preliminary to accomplishing task 8 (testing of 
inhibition of cofactors in cultured cells), we have constructed plasmids engineered for the 
expression of GFP-cofactor fusion proteins in mammalian cell. This will allow monitoring 
of the effects of inhibitors on cofactors, as well as titrating out inhibitors by overexpression 
of cofactors. In preliminary experiments we found that overexpression of GFP-cofactor D 
and GFP-cofactor E, but not GFP-cofactor C, was lethal in cultured cells, causing the 
complete loss of tubulin and microtubules (Fig. 6). This result supports the hypothesis on 
which the entire proposal was based, namely that interference with cofactor function will be 
lethal to cancer cells. 



Fig. 6. Overexpression of GFP-cofactor D results in the loss of tubulin heterodimer and 
microtubules from HeLa cells. GFP-cofactor D is expressed in a subset of cells by 
transient transfection (green); the tubulin is labeled with an anti-a-tubulin monoclonal 
antibody, followed by rhodamine labeled second antibody (red). 
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KEY RESEARCH ACCOMPLISHMENTS 

Cofactor D from an adenovirus expression clone can be purified from infected cells in 

good yeild. This purified recombinant cofactor D is found complexed with ß-tubulin. 

Loss of several amino acids from the carboxyterminus of a- or ß-tubulin greatly 

affects their in vitro folding, and suggests that C-terminal peptides could behave as 

cofactor inhibitors. 

Overexpression of cofactors D and E in cultured cells is lethal, validating our 

hypothesis that correct cofactor functioning is vital for cancer cell survival. 

REPORTABLE OUTCOMES 

The data contained in this report were presented at the 14th Meeting of the European 
Cytoskeleton Forum held in Oeiras, Portugal, August 28th-September 2nd, 1999. 

CONCLUSIONS 

In the first two years of this grant we have succeeded in producing milligram 
quantities of recombinant tubulin-folding cofactors A, B, C, D and E. This is a vital 
prerequisite for the proposed search for inhibitors of these proteins. We have also shown 
that the proper functioning of these proteins is necessary for cancer cell survival. As yet 
we have not successfully found cofactor inhibitors in peptide libraries. However, 
proteolysis of tubulin and production of tubulin subfragments by genetic engineering show 
promise for the identification of inhibitors.   Such inhibitors could be valuable in the 
treatment of breast cancer. 
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